
Sustainable technology of 4110 ?
Sustainable technology in 4110 focuses on developing and implementing environmentally friendly practices and solutions within various sectors. This includes renewable energy sources, waste management, and sustainable agriculture.
What is Sustainable technology of 4110 ?
Sustainable technology in 4110 focuses on developing and implementing environmentally friendly practices and solutions within various sectors. This includes renewable energy sources, waste management, and sustainable agriculture.
Who is required Sustainable technology of 4110 ?
Sustainable technology in 4110 is required by a wide range of individuals and organizations, including:
- Governments: To meet environmental regulations and sustainability goals.
- Businesses: To reduce their environmental impact and improve their bottom line.
- Individuals: To make more sustainable choices in their daily lives.
- Communities: To create more sustainable and resilient communities.
- Researchers and developers: To create new and innovative sustainable technologies.
- Educators: To teach the next generation about sustainability and sustainable technology.
In short, sustainable technology is required by anyone who wants to create a more sustainable future.
When is required Sustainable technology of 4110 ?
This is for informational purposes only. For medical advice or diagnosis, consult a professional.
Sustainable technology in 4110 is required now. The need for sustainable solutions is urgent, as we face pressing environmental challenges like climate change, resource depletion, and pollution. Delaying the implementation of sustainable technologies will only exacerbate these problems and make it more difficult to achieve a sustainable future.
Here are some reasons why sustainable technology is needed now:
- Climate change: The effects of climate change are already being felt around the world, with rising sea levels, extreme weather events, and more frequent droughts and floods. Sustainable technologies can help us reduce our greenhouse gas emissions and mitigate the impacts of climate change.
- Resource depletion: We are using up our natural resources at an unsustainable rate. Sustainable technologies can help us conserve resources and find new ways to use them more efficiently.
- Pollution: Pollution is a major problem that affects both human health and the environment. Sustainable technologies can help us reduce pollution and create a cleaner and healthier world.
In addition to these environmental benefits, sustainable technology can also have economic and social benefits. For example, sustainable businesses can create new jobs and boost economic growth. Sustainable communities can be more resilient and equitable.
Overall, sustainable technology is essential for creating a sustainable future. We need to start implementing sustainable solutions now to address the challenges we face and create a better world for ourselves and future generations.
Where is required Sustainable technology of 4110 ?
Sustainable technology in 4110 is required in a wide range of places, including:
- Homes: To reduce energy consumption, conserve water, and minimize waste.
- Businesses: To improve energy efficiency, reduce pollution, and create sustainable products and services.
- Transportation: To develop and use cleaner fuels, improve fuel efficiency, and reduce traffic congestion.
- Agriculture: To produce food more sustainably, reduce water usage, and minimize the use of pesticides and fertilizers.
- Industry: To reduce pollution, conserve resources, and develop more sustainable manufacturing processes.
- Communities: To create more sustainable and resilient communities, with access to clean energy, clean water, and affordable housing.
In short, sustainable technology is needed in any place where human activities have an impact on the environment.
How is required Sustainable technology of 4110 ?
Sustainable technology isn’t a single thing, so there’s no single “how” it’s required. It’s more about how we approach problems and implement solutions with sustainability in mind. Here’s a breakdown of how sustainable technology is required, focusing on the methods and approaches:
- Through Innovation and Research: Developing new materials, processes, and technologies that are less resource-intensive, less polluting, and more efficient is crucial. This involves scientific research, engineering, and design thinking. Examples include developing more efficient solar panels, creating biodegradable plastics, or designing closed-loop manufacturing systems.
- Through Policy and Regulation: Governments play a key role by setting standards, incentives, and regulations that encourage sustainable practices. This could involve carbon pricing, renewable energy mandates, or regulations on waste disposal.
- Through Education and Awareness: Raising awareness about sustainability issues and educating people about sustainable practices is essential. This empowers individuals and communities to make informed choices and adopt sustainable behaviors.
- Through Investment and Funding: Supporting the development and deployment of sustainable technologies requires significant investment from both public and private sectors. This includes funding research, providing subsidies for renewable energy projects, and supporting green businesses.
- Through Collaboration and Partnerships: Addressing sustainability challenges requires collaboration among different stakeholders, including governments, businesses, researchers, and communities. Sharing knowledge, resources, and best practices is essential for accelerating the transition to a sustainable future.
- Through Implementation and Adoption: Developing sustainable technologies is only the first step. It’s also important to ensure that these technologies are widely adopted and implemented. This requires creating market incentives, building infrastructure, and providing training and support.
- Through Life Cycle Assessment: Considering the entire life cycle of a product or process, from raw material extraction to disposal, is crucial for identifying and minimizing environmental impacts. This approach helps to avoid shifting environmental burdens from one stage to another.
- Through Systems Thinking: Recognizing the interconnectedness of different systems and understanding how changes in one area can affect others is essential for developing holistic and sustainable solutions.
In essence, sustainable technology is required through a multi-faceted approach that involves innovation, policy, education, investment, collaboration, implementation, and a focus on the entire life cycle and interconnectedness of systems. It’s not a single solution but a way of thinking and acting.
Case study is Sustainable technology of 4110 ?
Yes, case studies are a valuable tool for understanding and promoting sustainable technology in 4110. They provide real-world examples of how sustainable technologies are being implemented and the benefits they are delivering.
Here’s why case studies are important in this context:
- Demonstrate practical applications: Case studies show how sustainable technologies are being used in different sectors and contexts. This helps to bridge the gap between theory and practice, making the concepts more tangible and relatable.
- Highlight success stories: By showcasing successful implementations of sustainable technologies, case studies can inspire and motivate others to adopt similar solutions. They provide evidence that sustainable practices can be both environmentally and economically beneficial.
- Identify challenges and lessons learned: Case studies also document the challenges encountered during the implementation of sustainable technologies and the lessons learned from those experiences. This can help others avoid common pitfalls and improve their own approaches.
- Promote knowledge sharing and collaboration: Case studies can be used as a platform for sharing knowledge and best practices among different stakeholders, including researchers, businesses, policymakers, and communities. This can foster collaboration and accelerate the adoption of sustainable technologies.
Some examples of areas where case studies could be particularly useful in 4110 include:
- Renewable energy: Case studies on successful solar, wind, or geothermal energy projects can demonstrate the feasibility and benefits of these technologies.
- Sustainable agriculture: Case studies on organic farming, agroforestry, or water-efficient irrigation systems can showcase sustainable agricultural practices and their impact on food security and the environment.
- Waste management: Case studies on recycling programs, composting initiatives, or waste-to-energy projects can highlight innovative approaches to waste management and resource recovery.
- Sustainable transportation: Case studies on electric vehicle adoption, public transportation systems, or bicycle-sharing programs can illustrate how to create more sustainable transportation systems.
- Green buildings: Case studies on energy-efficient buildings, LEED certification, or sustainable building materials can demonstrate how to construct more environmentally friendly buildings.
By compiling and disseminating case studies on sustainable technology in 4110, we can accelerate the transition to a more sustainable future.
White paper on Sustainable technology of 4110 ?
A white paper on Sustainable Technology in 4110 would be a comprehensive document that explores the current state of sustainable technology, its potential impact on various sectors, and recommendations for its development and implementation. Here’s a possible structure and key areas a white paper like this could cover:
I. Introduction
- Defining Sustainable Technology: Clearly define what constitutes sustainable technology, emphasizing its goals of minimizing environmental impact, conserving resources, and promoting social equity.
- The Context of 4110: Briefly discuss the world in 4110, highlighting the environmental and social challenges that necessitate sustainable solutions.
- Purpose of the White Paper: State the paper’s objective, which could be to inform policymakers, businesses, and the public about the importance of sustainable technology and to propose strategies for its advancement.
II. Current State of Sustainable Technology in 4110
- Renewable Energy: Assess the progress in renewable energy sources like solar, wind, hydro, and geothermal, including their efficiency, cost-effectiveness, and integration into energy grids.
- Resource Management: Examine advancements in waste reduction, recycling, resource recovery, and the development of circular economies.
- Sustainable Agriculture: Explore innovations in food production that minimize environmental impact, such as precision agriculture, vertical farming, and plant-based protein alternatives.
- Green Buildings: Analyze the adoption of sustainable building practices, including energy efficiency, green materials, and smart building technologies.
- Sustainable Transportation: Evaluate the progress in electric vehicles, alternative fuels, and smart transportation systems that reduce emissions and congestion.
- Other Areas: Cover other relevant areas like sustainable manufacturing, water management, and information and communication technology.
III. Challenges and Opportunities
- Technological Barriers: Discuss any remaining technological hurdles in developing and scaling up sustainable solutions.
- Economic Factors: Analyze the costs and benefits of sustainable technology, including investment needs, job creation, and economic growth.
- Policy and Regulatory Frameworks: Examine the role of governments in promoting sustainable technology through policies, incentives, and regulations.
- Social and Cultural Aspects: Explore public awareness, acceptance, and behavior change related to sustainable practices.
IV. Recommendations
- Research and Development: Propose directions for future research and development in sustainable technology.
- Policy and Regulation: Recommend specific policy measures to support the adoption and implementation of sustainable solutions.
- Business Strategies: Suggest strategies for businesses to integrate sustainability into their operations and supply chains.
- Education and Awareness: Outline initiatives to educate the public and promote sustainable lifestyles.
- International Cooperation: Emphasize the importance of global collaboration in addressing sustainability challenges.
V. Conclusion
- Vision for a Sustainable Future: Paint a picture of a world in 4110 where sustainable technology plays a central role in addressing environmental and social challenges.
- Call to Action: Urge stakeholders to take immediate action to accelerate the development and implementation of sustainable technology.
VI. Appendices
- Include any supporting data, statistics, case studies, or references.
This white paper would serve as a valuable resource for anyone interested in understanding and contributing to the advancement of sustainable technology in 4110.
Industrial application of Sustainable technology of 4110 ?
This is for informational purposes only. For medical advice or diagnosis, consult a professional.
Sustainable technology in 4110 finds applications across a wide range of industries, revolutionizing processes and products to minimize environmental impact and promote resource efficiency. Here are some key industrial applications:
- Manufacturing:
- Renewable Energy Integration: Factories are powered by on-site renewable energy sources like solar and wind, reducing reliance on fossil fuels.
- Closed-Loop Systems: Manufacturing processes are designed to minimize waste and pollution, with materials being recycled and reused within the system.
- Sustainable Materials: Industries utilize eco-friendly materials like bioplastics, recycled metals, and sustainable composites, reducing dependence on virgin resources.
- Energy:
- Smart Grids: Advanced energy grids optimize energy distribution and reduce transmission losses, improving overall efficiency.
- Energy Storage: Innovative energy storage solutions like advanced batteries and pumped hydro enable the seamless integration of renewable energy sources.
- Carbon Capture and Storage: Industries implement technologies to capture carbon emissions from industrial processes and store them underground, mitigating climate change.
- Transportation:
- Electric Vehicles: Industries mass-produce electric vehicles powered by renewable energy, reducing reliance on fossil fuels and air pollution.
- Sustainable Aviation: Airlines utilize biofuels and advanced engine technologies to reduce emissions from air travel.
- Smart Logistics: Logistics companies optimize routes and utilize electric vehicles to reduce fuel consumption and emissions.
- Agriculture:
- Precision Agriculture: Farmers utilize sensors and data analytics to optimize resource use, reducing water consumption and fertilizer application.
- Vertical Farming: Indoor vertical farms utilize controlled environments to grow crops with minimal land and water usage.
- Sustainable Packaging: Food industries utilize biodegradable and compostable packaging materials to reduce waste.
- Construction:
- Green Buildings: Buildings are designed and constructed to minimize energy consumption, utilize renewable energy, and incorporate sustainable materials.
- Modular Construction: Prefabricated building components reduce construction waste and improve efficiency.
- Smart Infrastructure: Infrastructure systems are equipped with sensors and data analytics to optimize resource use and reduce environmental impact.
- Information and Communication Technology:
- Green Data Centers: Data centers are designed to minimize energy consumption and utilize renewable energy sources.
- Sustainable Electronics: Electronic devices are designed for durability, recyclability, and energy efficiency.
- Virtualization and Cloud Computing: These technologies reduce the need for physical infrastructure and promote resource sharing.
These are just a few examples of how sustainable technology is transforming industries in 4110. As technology continues to advance, we can expect to see even more innovative and sustainable solutions emerge across various sectors.
Research and development of Sustainable technology of 4110 ?
The research and development of sustainable technology in 4110 is a dynamic and multifaceted field, driven by the urgent need to address global challenges like climate change, resource depletion, and pollution. Here are some key areas of focus:
1. Advanced Materials:
- Bioplastics: Developing new bioplastics from renewable resources that are biodegradable and compostable, reducing reliance on fossil-based plastics.
- Nanomaterials: Exploring the use of nanomaterials for applications like energy storage, water purification, and pollution control, with a focus on ensuring their safety and sustainability.
- Smart Materials: Creating materials that can adapt to their environment, such as self-healing materials for infrastructure or materials that can change color to regulate building temperature.
2. Renewable Energy:
- Next-Generation Solar Cells: Researching new materials and designs for solar cells to increase their efficiency, reduce their cost, and enable their integration into various surfaces.
- Advanced Energy Storage: Developing more efficient and cost-effective energy storage solutions, such as advanced batteries, pumped hydro storage, and thermal energy storage.
- Fusion Energy: Pursuing research on fusion energy as a potential clean and abundant energy source for the future.
3. Sustainable Agriculture:
- Precision Agriculture: Developing sensors, data analytics, and automation technologies to optimize resource use in agriculture, reducing water consumption, fertilizer application, and pesticide use.
- Vertical Farming: Researching and improving vertical farming techniques to increase food production in urban areas and reduce the environmental impact of agriculture.
- Plant-Based Protein: Developing new and innovative plant-based protein alternatives to reduce the environmental footprint of meat production.
4. Green Buildings:
- Energy-Efficient Building Materials: Researching and developing new building materials that are more energy-efficient, such as insulation materials with higher thermal resistance or materials that can generate energy.
- Smart Building Technologies: Developing advanced building management systems that can optimize energy use, water consumption, and indoor environmental quality.
- Sustainable Construction Methods: Exploring and implementing new construction methods that reduce waste, utilize recycled materials, and minimize environmental impact.
5. Sustainable Transportation:
- Electric Vehicle Batteries: Researching and developing batteries with higher energy density, faster charging times, and longer lifespans to improve the performance and affordability of electric vehicles.
- Alternative Fuels: Exploring and developing sustainable alternative fuels for transportation, such as biofuels, hydrogen fuel cells, and synthetic fuels.
- Smart Transportation Systems: Developing intelligent transportation systems that can optimize traffic flow, reduce congestion, and promote the use of public transportation and shared mobility services.
6. Other Areas:
- Water Purification: Researching and developing new technologies for water purification and desalination to address water scarcity issues.
- Waste Management: Developing innovative solutions for waste reduction, recycling, and resource recovery, moving towards a circular economy model.
- Environmental Monitoring: Developing advanced sensors and data analytics to monitor environmental conditions, track pollution levels, and assess the impact of human activities on the environment.
These are just a few examples of the exciting research and development efforts in sustainable technology in 4110. By continuing to invest in innovation and collaboration, we can accelerate the transition to a more sustainable future.
COURTESY : Bernard Marr
References
- ^ Jump up to:a b c Kutscher, Milford & Kreith 2019, pp. 5–6.
- ^ Zhang, Wei; Li, Binshuai; Xue, Rui; Wang, Chengcheng; Cao, Wei (2021). “A systematic bibliometric review of clean energy transition: Implications for low-carbon development”. PLOS ONE. 16 (12): e0261091. Bibcode:2021PLoSO..1661091Z. doi:10.1371/journal.pone.0261091. PMC 8641874. PMID 34860855.
- ^ United Nations Development Programme 2016, p. 5.
- ^ “Definitions: energy, sustainability and the future”. OpenLearn. The Open University. Archived from the original on 27 January 2021. Retrieved 30 December 2020.
- ^ Golus̆in, Popov & Dodić 2013, p. 8.
- ^ Jump up to:a b c d Hammond, Geoffrey P.; Jones, Craig I. “Sustainability criteria for energy resources and technologies”. In Galarraga, González-Eguino & Markandya (2011), pp. 21–47.
- ^ Jump up to:a b c d UNECE 2020, pp. 3–4.
- ^ Gunnarsdottir, I.; Davidsdottir, B.; Worrell, E.; Sigurgeirsdottir, S. (May 2021). “Sustainable energy development: History of the concept and emerging themes”. Renewable and Sustainable Energy Reviews. 141: 110770. Bibcode:2021RSERv.14110770G. doi:10.1016/j.rser.2021.110770. hdl:1874/411740.
- ^ Kutscher, Milford & Kreith 2019, pp. 1–2.
- ^ Vera, Ivan; Langlois, Lucille (2007). “Energy indicators for sustainable development”. Energy. 32 (6): 875–882. Bibcode:2007Ene….32..875V. doi:10.1016/j.energy.2006.08.006.
- ^ Kutscher, Milford & Kreith 2019, pp. 3–5.
- ^ Ritchie, Hannah; Roser, Max (2021). “What are the safest and cleanest sources of energy?”. Our World in Data. Archived from the original on 15 January 2024. Data sources: Markandya & Wilkinson (2007); UNSCEAR (2008; 2018); Sovacool et al. (2016); IPCC AR5 (2014); Pehl et al. (2017); Ember Energy (2021).
- ^ Jump up to:a b United Nations Environment Programme 2019, p. 46.
- ^ “Global Historical Emissions”. Climate Watch. Archived from the original on 4 June 2021. Retrieved 19 August 2021.
- ^ Ge, Mengpin; Friedrich, Johannes; Vigna, Leandro (August 2021). “4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors”. World Resources Institute. Archived from the original on 19 August 2021. Retrieved 19 August 2021.
- ^ “The Paris Agreement”. United Nations Framework Convention on Climate Change. Archived from the original on 19 March 2021. Retrieved 18 September 2021.
- ^ Watts, Nick; Amann, Markus; Arnell, Nigel; Ayeb-Karlsson, Sonja; et al. (2021). “The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises” (PDF). The Lancet. 397 (10269): 151. Bibcode:2021Lanc..397..129W. doi:10.1016/S0140-6736(20)32290-X. PMC 7616803. PMID 33278353.
- ^ “Every breath you take: The staggering, true cost of air pollution”. United Nations Development Programme. 4 June 2019. Archived from the original on 20 April 2021. Retrieved 4 May 2021.
- ^ “New WHO Global Air Quality Guidelines aim to save millions of lives from air pollution”. World Health Organization. 22 September 2021. Archived from the original on 23 September 2021. Retrieved 16 October 2021.
- ^ “Acid Rain and Water”. United States Geological Survey. Archived from the original on 27 June 2021. Retrieved 14 October 2021.
- ^ Jump up to:a b World Health Organization 2018, p. 16.
- ^ “Ambient (outdoor) air pollution”. World Health Organization. 22 September 2021. Archived from the original on 8 October 2021. Retrieved 22 October 2021.
- ^ Ritchie, Hannah; Roser, Max (2019). “Access to Energy”. Our World in Data. Archived from the original on 1 April 2021. Retrieved 1 April 2021.
- ^ Jump up to:a b World Health Organization 2016, pp. vii–xiv.
- ^ Soysal & Soysal 2020, p. 118.
- ^ Soysal & Soysal 2020, pp. 470–472.
- ^ Tester et al. 2012, p. 504.
- ^ Kessides, Ioannis N.; Toman, Michael (28 July 2011). “The Global Energy Challenge”. World Bank. Archived from the original on 25 July 2019. Retrieved 27 September 2019.
- ^ Morris et al. 2015, pp. 24–27.
- ^ “Access to clean cooking”. SDG7: Data and Projections. IEA. October 2020. Archived from the original on 6 December 2019. Retrieved 31 March 2021.
- ^ IEA 2021, p. 167.
- ^ Sarkodie, Samuel Asumadu (20 July 2022). “Winners and losers of energy sustainability—Global assessment of the Sustainable Development Goals”. Science of the Total Environment. 831. 154945. Bibcode:2022ScTEn.83154945S. doi:10.1016/j.scitotenv.2022.154945. hdl:11250/3023660. PMID 35367559.
- ^ Deputy Secretary-General (6 June 2018). “Sustainable Development Goal 7 on Reliable, Modern Energy ‘Golden Thread’ Linking All Other Targets, Deputy-Secretary-General Tells High-Level Panel” (Press release). United Nations. Archived from the original on 17 May 2021. Retrieved 19 March 2021.
- ^ Jump up to:a b “Goal 7: Ensure access to affordable, reliable, sustainable and modern energy for all”. SDG Tracker. Archived from the original on 2 February 2021. Retrieved 12 March 2021.
- ^ “Energy use per person”. Our World in Data. Archived from the original on 28 November 2020. Retrieved 16 July 2021.
- ^ “Europe 2030: Energy saving to become “first fuel””. EU Science Hub. European Commission. 25 February 2016. Archived from the original on 18 September 2021. Retrieved 18 September 2021.
- ^ Motherway, Brian (19 December 2019). “Energy efficiency is the first fuel, and demand for it needs to grow”. IEA. Archived from the original on 18 September 2021. Retrieved 18 September 2021.
- ^ “Energy Efficiency 2018: Analysis and outlooks to 2040”. IEA. October 2018. Archived from the original on 29 September 2020.
- ^ Fernandez Pales, Araceli; Bouckaert, Stéphanie; Abergel, Thibaut; Goodson, Timothy (10 June 2021). “Net zero by 2050 hinges on a global push to increase energy efficiency”. IEA. Archived from the original on 20 July 2021. Retrieved 19 July 2021.
- ^ Jump up to:a b IEA 2021, pp. 68–69.
- ^ Mundaca, Luis; Ürge-Vorsatz, Diana; Wilson, Charlie (February 2019). “Demand-side approaches for limiting global warming to 1.5 °C”. Energy Efficiency. 12 (2): 343–362. Bibcode:2019EnEff..12..343M. doi:10.1007/s12053-018-9722-9.
- ^ Jump up to:a b IEA, IRENA, United Nations Statistics Division, World Bank, World Health Organization 2021, p. 12.
- ^ Jump up to:a b IEA, IRENA, United Nations Statistics Division, World Bank, World Health Organization 2021, p. 11.
- ^ Brockway, Paul E.; Sorrell, Steve; Semieniuk, Gregor; Heun, Matthew Kuperus; Court, Victor (May 2021). “Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications”. Renewable and Sustainable Energy Reviews. 141: 110781. Bibcode:2021RSERv.14110781B. doi:10.1016/j.rser.2021.110781.
- ^ “Energy Efficiency 2019”. IEA. November 2019. Archived from the original on 13 October 2020. Retrieved 21 September 2020.
- ^ Bond, Kingsmill; Butler-Sloss, Sam; Lovins, Amory; Speelman, Laurens; Topping, Nigel (13 June 2023). “Report / 2023 / X-Change: Electricity / On track for disruption”. Rocky Mountain Institute. Archived from the original on 13 July 2023.
- ^ Source for data beginning in 2017: “Renewable Energy Market Update Outlook for 2023 and 2024” (PDF). International Energy Agency. June 2023. p. 19. Archived (PDF) from the original on 11 July 2023.
IEA. CC BY 4.0.
● Source for data through 2016: “Renewable Energy Market Update / Outlook for 2021 and 2022” (PDF). IEA.org. International Energy Agency. May 2021. p. 8. Archived (PDF) from the original on 25 March 2023.IEA. Licence: CC BY 4.0
- ^ “World Energy Investment 2023 / Overview and key findings”. International Energy Agency (IEA). 25 May 2023. Archived from the original on 31 May 2023.
Global energy investment in clean energy and in fossil fuels, 2015-2023 (chart)
— From pages 8 and 12 of World Energy Investment 2023 (archive). - ^ IEA 2007, p. 3.
- ^ Santangeli, Andrea; Toivonen, Tuuli; Pouzols, Federico Montesino; Pogson, Mark; Hastings, Astley; Smith, Pete; Moilanen, Atte (September 2016). “Global change synergies and trade-offs between renewable energy and biodiversity”. GCB Bioenergy. 8 (5): 941–951. Bibcode:2016GCBBi…8..941S. doi:10.1111/gcbb.12299. hdl:2164/6138.
- ^ Rehbein, Jose A.; Watson, James E. M.; Lane, Joe L.; Sonter, Laura J.; Venter, Oscar; Atkinson, Scott C.; Allan, James R. (May 2020). “Renewable energy development threatens many globally important biodiversity areas”. Global Change Biology. 26 (5): 3040–3051. Bibcode:2020GCBio..26.3040R. doi:10.1111/gcb.15067. PMID 32133726.
- ^ Ritchie, Hannah (2019). “Renewable Energy”. Our World in Data. Archived from the original on 4 August 2020. Retrieved 31 July 2020.
- ^ Renewables 2020 Analysis and forecast to 2025 (PDF) (Report). IEA. 2020. p. 12. Archived from the original on 26 April 2021.
- ^ “Access to electricity”. SDG7: Data and Projections. IEA. 2020. Archived from the original on 13 May 2021. Retrieved 5 May 2021.
- ^ “Infrastructure Solutions: The power of purchase agreements”. European Investment Bank. Retrieved 1 September 2022.
- ^ “Renewable Power – Analysis”. IEA. Retrieved 1 September 2022.
- ^ “Global Electricity Review 2022”. Ember. 29 March 2022. Retrieved 1 September 2022.
- ^ “Renewable Energy and Electricity | Sustainable Energy | Renewable Energy – World Nuclear Association”. world-nuclear.org. Retrieved 1 September 2022.
- ^ Jump up to:a b IEA (2022), Renewables 2022, IEA, Paris https://www.iea.org/reports/renewables-2022, License: CC BY 4.0
- ^ Soysal & Soysal 2020, p. 406.
- ^ Jump up to:a b c “Wind & Solar Share in Electricity Production Data”. Global Energy Statistical Yearbook 2021. Enerdata. Archived from the original on 19 July 2019. Retrieved 13 June 2021.
- ^ Kutscher, Milford & Kreith 2019, pp. 34–35.
- ^ Jump up to:a b “Levelized Cost of Energy and of Storage”. Lazard. 19 October 2020. Archived from the original on 25 February 2021. Retrieved 26 February 2021.
- ^ Victoria, Marta; Haegel, Nancy; Peters, Ian Marius; Sinton, Ron; Jäger-Waldau, Arnulf; del Cañizo, Carlos; Breyer, Christian; Stocks, Matthew; Blakers, Andrew; Kaizuka, Izumi; Komoto, Keiichi; Smets, Arno (May 2021). “Solar photovoltaics is ready to power a sustainable future”. Joule. 5 (5): 1041–1056. Bibcode:2021Joule…5.1041V. doi:10.1016/j.joule.2021.03.005.
- ^ IRENA 2021, pp. 19, 22.
- ^ Goetz, Katelyn P.; Taylor, Alexander D.; Hofstetter, Yvonne J.; Vaynzof, Yana (13 January 2021). “Sustainability in Perovskite Solar Cells”. ACS Applied Materials & Interfaces. 13 (1): 1–17. doi:10.1021/acsami.0c17269. PMID 33372760.
- ^ Xu, Yan; Li, Jinhui; Tan, Quanyin; Peters, Anesia Lauren; Yang, Congren (May 2018). “Global status of recycling waste solar panels: A review”. Waste Management. 75: 450–458. Bibcode:2018WaMan..75..450X. doi:10.1016/j.wasman.2018.01.036. PMID 29472153.
- ^ Tian, Xueyu; Stranks, Samuel D.; You, Fengqi (31 July 2020). “Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells”. Science Advances. 6 (31): eabb0055. Bibcode:2020SciA….6…55T. doi:10.1126/sciadv.abb0055. PMC 7399695. PMID 32789177.
- ^ Kutscher, Milford & Kreith 2019, pp. 35–36.
- ^ “Solar energy”. International Renewable Energy Agency. Archived from the original on 13 May 2021. Retrieved 5 June 2021.
- ^ REN21 2020, p. 124.
- ^ Soysal & Soysal 2020, p. 366.
- ^ “What are the advantages and disadvantages of offshore wind farms?”. American Geosciences Institute. 12 May 2016. Archived from the original on 18 September 2021. Retrieved 18 September 2021.
- ^ Szarka 2007, p. 176.
- ^ Wang, Shifeng; Wang, Sicong (September 2015). “Impacts of wind energy on environment: A review”. Renewable and Sustainable Energy Reviews. 49: 437–443. Bibcode:2015RSERv..49..437W. doi:10.1016/j.rser.2015.04.137.
- ^ Soysal & Soysal 2020, p. 215.
- ^ Soysal & Soysal 2020, p. 213.
- ^ Huang, Yu-Fong; Gan, Xing-Jia; Chiueh, Pei-Te (March 2017). “Life cycle assessment and net energy analysis of offshore wind power systems”. Renewable Energy. 102: 98–106. Bibcode:2017REne..102…98H. doi:10.1016/j.renene.2016.10.050.
- ^ Belton, Padraig (7 February 2020). “What happens to all the old wind turbines?”. BBC. Archived from the original on 23 February 2021. Retrieved 27 February 2021.
- ^ Smil 2017b, p. 286.
- ^ REN21 2021, p. 21.
- ^ Jump up to:a b c Moran, Emilio F.; Lopez, Maria Claudia; Moore, Nathan; Müller, Norbert; Hyndman, David W. (20 November 2018). “Sustainable hydropower in the 21st century”. Proceedings of the National Academy of Sciences. 115 (47): 11891–11898. Bibcode:2018PNAS..11511891M. doi:10.1073/pnas.1809426115. PMC 6255148. PMID 30397145.
- ^ Kumar, A.; Schei, T.; Ahenkorah, A.; Caceres Rodriguez, R. et al. “Hydropower“. In IPCC (2011), pp. 451, 462, 488.
- ^ Jump up to:a b c Schlömer, S.; Bruckner, T.; Fulton, L.; Hertwich, E. et al. “Annex III: Technology-specific cost and performance parameters“. In IPCC (2014), p. 1335.
- ^ Almeida, Rafael M.; Shi, Qinru; Gomes-Selman, Jonathan M.; Wu, Xiaojian; Xue, Yexiang; Angarita, Hector; Barros, Nathan; Forsberg, Bruce R.; García-Villacorta, Roosevelt; Hamilton, Stephen K.; Melack, John M.; Montoya, Mariana; Perez, Guillaume; Sethi, Suresh A.; Gomes, Carla P.; Flecker, Alexander S. (19 September 2019). “Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning”. Nature Communications. 10 (1): 4281. doi:10.1038/s41467-019-12179-5. PMC 6753097. PMID 31537792.
- ^ László, Erika (1981). “Geothermal Energy: An Old Ally”. Ambio. 10 (5): 248–249. JSTOR 4312703.
- ^ REN21 2020, p. 97.
- ^ “Geothermal Energy Information and Facts”. National Geographic. 19 October 2009. Archived from the original on 8 August 2021. Retrieved 8 August 2021.
- ^ Jump up to:a b Ritchie, Hannah; Roser, Max (2020). “Energy mix”. Our World in Data. Archived from the original on 2 July 2021. Retrieved 9 July 2021.
- ^ Soysal & Soysal 2020, pp. 222, 228.
- ^ Soysal & Soysal 2020, pp. 228–229.
- ^ “Biomass explained”. US Energy Information Administration. 8 June 2021. Archived from the original on 15 September 2021. Retrieved 13 September 2021.
- ^ Kopetz, Heinz (7 February 2013). “Build a biomass energy market”. Nature. 494 (7435): 29–31. doi:10.1038/494029a. PMID 23389528.
- ^ Demirbas, Ayhan (August 2008). “Biofuels sources, biofuel policy, biofuel economy and global biofuel projections”. Energy Conversion and Management. 49 (8): 2106–2116. Bibcode:2008ECM….49.2106D. doi:10.1016/j.enconman.2008.02.020.
- ^ Jump up to:a b c Correa, Diego F.; Beyer, Hawthorne L.; Fargione, Joseph E.; Hill, Jason D.; Possingham, Hugh P.; Thomas-Hall, Skye R.; Schenk, Peer M. (June 2019). “Towards the implementation of sustainable biofuel production systems”. Renewable and Sustainable Energy Reviews. 107: 250–263. Bibcode:2019RSERv.107..250C. doi:10.1016/j.rser.2019.03.005.
- ^ Daley, Jason (24 April 2018). “The EPA Declared That Burning Wood Is Carbon Neutral. It’s Actually a Lot More Complicated”. Smithsonian Magazine. Archived from the original on 30 June 2021. Retrieved 14 September 2021.
- ^ Tester et al. 2012, p. 512.
- ^ Jump up to:a b Smil 2017a, p. 162.
- ^ World Health Organization 2016, p. 73.
- ^ IPCC 2014, p. 616.
- ^ “Biofuels explained: Ethanol”. US Energy Information Administration. 18 June 2020. Archived from the original on 14 May 2021. Retrieved 16 May 2021.
- ^ Foley, Jonathan (5 March 2013). “It’s Time to Rethink America’s Corn System”. Scientific American. Archived from the original on 3 January 2020. Retrieved 16 May 2021.
- ^ Ayompe, Lacour M.; Schaafsma, M.; Egoh, Benis N. (January 2021). “Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing”. Journal of Cleaner Production. 278: 123914. Bibcode:2021JCPro.27823914A. doi:10.1016/j.jclepro.2020.123914.
- ^ Lustgarten, Abrahm (20 November 2018). “Palm Oil Was Supposed to Help Save the Planet. Instead It Unleashed a Catastrophe”. The New York Times. Archived from the original on 17 May 2019. Retrieved 15 May 2019.
- ^ Smil 2017a, p. 161.
- ^ National Academies of Sciences, Engineering, and Medicine 2019, p. 3.
- ^ REN21 2021, pp. 113–116.
- ^ “The Role of Gas: Key Findings”. IEA. July 2019. Archived from the original on 1 September 2019. Retrieved 4 October 2019.
- ^ “Natural gas and the environment”. US Energy Information Administration. Archived from the original on 2 April 2021. Retrieved 28 March 2021.
- ^ Jump up to:a b Storrow, Benjamin. “Methane Leaks Erase Some of the Climate Benefits of Natural Gas”. Scientific American. Retrieved 31 May 2023.
- ^ Plumer, Brad (26 June 2019). “As Coal Fades in the U.S., Natural Gas Becomes the Climate Battleground”. The New York Times. Archived from the original on 23 September 2019. Retrieved 4 October 2019.
- ^ Gürsan, C.; de Gooyert, V. (March 2021). “The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?”. Renewable and Sustainable Energy Reviews. 138: 110552. Bibcode:2021RSERv.13810552G. doi:10.1016/j.rser.2020.110552. hdl:2066/228782.
- ^ Budinis, Sara; Krevor, Samuel; Dowell, Niall Mac; Brandon, Nigel; Hawkes, Adam (November 2018). “An assessment of CCS costs, barriers and potential”. Energy Strategy Reviews. 22: 61–81. Bibcode:2018EneSR..22…61B. doi:10.1016/j.esr.2018.08.003.
- ^ “Zero-emission carbon capture and storage in power plants using higher capture rates”. IEA. 7 January 2021. Archived from the original on 30 March 2021. Retrieved 14 March 2021.
- ^ Jump up to:a b Ritchie, Hannah (10 February 2020). “What are the safest and cleanest sources of energy?”. Our World in Data. Archived from the original on 29 November 2020. Retrieved 14 March 2021.
- ^ Evans, Simon (8 December 2017). “Solar, wind and nuclear have ‘amazingly low’ carbon footprints, study finds”. Carbon Brief. Archived from the original on 16 March 2021. Retrieved 15 March 2021.
- ^ IPCC 2018, 5.4.1.2.
- ^ IPCC AR6 WG3 2022, p. 38.
- ^ “Global Status Report 2024”. Global CCS Institute. pp. 57–58. Retrieved 19 October 2024. The report lists 50 facilities, of which 3 are direct air capture facilities and 3 are transport/storage facilities
- ^ Roser, Max (10 December 2020). “The world’s energy problem”. Our World in Data. Archived from the original on 21 July 2021. Retrieved 21 July 2021.
- ^ Rhodes, Richard (19 July 2018). “Why Nuclear Power Must Be Part of the Energy Solution”. Yale Environment 360. Yale School of the Environment. Archived from the original on 9 August 2021. Retrieved 24 July 2021.
- ^ “Nuclear Power in the World Today”. World Nuclear Association. June 2021. Archived from the original on 16 July 2021. Retrieved 19 July 2021.
- ^ Bailey, Ronald (10 May 2023). “New study: Nuclear power is humanity’s greenest energy option”. Reason.com. Retrieved 22 May 2023.
- ^ Ritchie, Hannah; Roser, Max (2020). “Nuclear Energy”. Our World in Data. Archived from the original on 20 July 2021. Retrieved 19 July 2021.
- ^ MacKay 2008, p. 162.
- ^ Jump up to:a b c d e Gill, Matthew; Livens, Francis; Peakman, Aiden (2014). “Nuclear Fission”. Future Energy. pp. 135–149. doi:10.1016/B978-0-08-102886-5.00007-4. ISBN 978-0-08-102886-5.
- ^ Muellner, Nikolaus; Arnold, Nikolaus; Gufler, Klaus; Kromp, Wolfgang; Renneberg, Wolfgang; Liebert, Wolfgang (August 2021). “Nuclear energy – The solution to climate change?”. Energy Policy. 155: 112363. Bibcode:2021EnPol.15512363M. doi:10.1016/j.enpol.2021.112363.
- ^ IPCC 2018, 2.4.2.1.
- ^ Timmer, John (21 November 2020). “Why are nuclear plants so expensive? Safety’s only part of the story”. Ars Technica. Archived from the original on 28 April 2021. Retrieved 17 March 2021.
- ^ Technical assessment of nuclear energy with respect to the ‘do no significant harm’ criteria of Regulation (EU) 2020/852 (‘Taxonomy Regulation’) (PDF) (Report). European Commission Joint Research Centre. 2021. p. 53. Archived (PDF) from the original on 26 April 2021.
- ^ Locatelli, Giorgio; Mignacca, Benito (2020). “Small Modular Nuclear Reactors”. Future Energy. pp. 151–169. doi:10.1016/B978-0-08-102886-5.00008-6. ISBN 978-0-08-102886-5.
- ^ McGrath, Matt (6 November 2019). “Nuclear fusion is ‘a question of when, not if'”. BBC. Archived from the original on 25 January 2021. Retrieved 13 February 2021.
- ^ Amos, Jonathan (9 February 2022). “Major breakthrough on nuclear fusion energy”. BBC. Archived from the original on 1 March 2022. Retrieved 10 February 2022.
- ^ “Energy Transition Investment Now On Par with Fossil Fuel”. Bloomberg NEF (New Energy Finance). 10 February 2023. Archived from the original on 27 March 2023.
- ^ Jaccard 2020, pp. 202–203, Chapter 11 – “Renewables Have Won”.
- ^ Jump up to:a b c d IPCC 2014, 7.11.3.
- ^ IEA 2021, pp. 106–110.
- ^ Jump up to:a b Evans, Simon; Gabbatiss, Josh (30 November 2020). “In-depth Q&A: Does the world need hydrogen to solve climate change?”. Carbon Brief. Archived from the original on 1 December 2020. Retrieved 1 December 2020.
- ^ Jaccard 2020, p. 203, Chapter 11 – “Renewables Have Won”.
- ^ “Reaching net zero emissions demands faster innovation, but we’ve already come a long way – Analysis”. International Energy Agency. 13 November 2023. Retrieved 30 April 2024.
- ^ Jump up to:a b IEA 2021, p. 15.
- ^ “Innovation – Energy System”. International Energy Agency. Retrieved 30 April 2024.
- ^ World Health Organization 2018, Executive Summary.
- ^ Vandyck, T.; Keramidas, K.; Kitous, A.; Spadaro, J.V.; et al. (2018). “Air quality co-benefits for human health and agriculture counterbalance costs to meet Paris Agreement pledges”. Nature Communications. 9 (1): 4939. Bibcode:2018NatCo…9.4939V. doi:10.1038/s41467-018-06885-9. PMC 6250710. PMID 30467311.
- ^ Jump up to:a b c d United Nations Environment Programme 2019, pp. 46–55.
- ^ IPCC 2018, p. 97.
- ^ Hopwood, David (May 2007). “Blueprint for sustainability?”. Refocus. 8 (3): 54–57. doi:10.1016/S1471-0846(07)70068-9.
- ^ United Nations Environment Programme 2019, p. 47.
- ^ “Introduction to System Integration of Renewables”. IEA. Archived from the original on 15 May 2020. Retrieved 30 May 2020.
- ^ Jump up to:a b c d Blanco, Herib; Faaij, André (January 2018). “A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage” (PDF). Renewable and Sustainable Energy Reviews. 81: 1049–1086. Bibcode:2018RSERv..81.1049B. doi:10.1016/j.rser.2017.07.062.
- ^ REN21 2020, p. 177.
- ^ Bloess, Andreas; Schill, Wolf-Peter; Zerrahn, Alexander (February 2018). “Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials”. Applied Energy. 212: 1611–1626. Bibcode:2018ApEn..212.1611B. doi:10.1016/j.apenergy.2017.12.073. hdl:10419/200120.
- ^ IEA 2020, p. 109.
- ^ Jump up to:a b Koohi-Fayegh, S.; Rosen, M.A. (February 2020). “A review of energy storage types, applications and recent developments”. Journal of Energy Storage. 27: 101047. Bibcode:2020JEnSt..2701047K. doi:10.1016/j.est.2019.101047.
- ^ Katz, Cheryl (17 December 2020). “The batteries that could make fossil fuels obsolete”. BBC. Archived from the original on 11 January 2021. Retrieved 10 January 2021.
- ^ Jump up to:a b “Climate change and batteries: the search for future power storage solutions” (PDF). Climate change: science and solutions. The Royal Society. 19 May 2021. Archived from the original on 16 October 2021. Retrieved 15 October 2021.
- ^ Hunt, Julian D.; Byers, Edward; Wada, Yoshihide; Parkinson, Simon; Gernaat, David E. H. J.; Langan, Simon; van Vuuren, Detlef P.; Riahi, Keywan (19 February 2020). “Global resource potential of seasonal pumped hydropower storage for energy and water storage”. Nature Communications. 11 (1): 947. Bibcode:2020NatCo..11..947H. doi:10.1038/s41467-020-14555-y. PMC 7031375. PMID 32075965.
- ^ Balaraman, Kavya (12 October 2020). “To batteries and beyond: With seasonal storage potential, hydrogen offers ‘a different ballgame entirely'”. Utility Dive. Archived from the original on 18 January 2021. Retrieved 10 January 2021.
- ^ Cole, Laura (15 November 2020). “How to cut carbon out of your heating”. BBC. Archived from the original on 27 August 2021. Retrieved 31 August 2021.
- ^ Ritchie, Hannah; Roser, Max (2020). “Electricity Mix”. Our World in Data. Archived from the original on 13 October 2021. Retrieved 16 October 2021.
- ^ IPCC 2018, 2.4.2.2.
- ^ IEA 2021, pp. 167–169.
- ^ United Nations Development Programme 2016, p. 30.
- ^ Jump up to:a b c Herrington, Richard (24 May 2021). “Mining our green future”. Nature Reviews Materials. 6 (6): 456–458. Bibcode:2021NatRM…6..456H. doi:10.1038/s41578-021-00325-9.
- ^ Mudd, Gavin M. “Metals and Elements Needed to Support Future Energy Systems”. In Letcher (2020), pp. 723–724.
- ^ Babbitt, Callie W. (August 2020). “Sustainability perspectives on lithium-ion batteries”. Clean Technologies and Environmental Policy. 22 (6): 1213–1214. Bibcode:2020CTEP…22.1213B. doi:10.1007/s10098-020-01890-3.
- ^ Jump up to:a b c IPCC AR6 WG3 2022, pp. 91–92.
- ^ Evans, Simon; Gabbatiss, Josh (30 November 2020). “In-depth Q&A: Does the world need hydrogen to solve climate change?”. Carbon Brief. Archived from the original on 1 December 2020. Retrieved 1 December 2020.
- ^ Jump up to:a b c Lewis, Alastair C. (10 June 2021). “Optimising air quality co-benefits in a hydrogen economy: a case for hydrogen-specific standards for NO x emissions”. Environmental Science: Atmospheres. 1 (5): 201–207. Bibcode:2021ESAt….1..201L. doi:10.1039/D1EA00037C. This article incorporates text from this source, which is available under the CC BY 3.0 license.
- ^ Reed, Stanley; Ewing, Jack (13 July 2021). “Hydrogen Is One Answer to Climate Change. Getting It Is the Hard Part”. The New York Times. Archived from the original on 14 July 2021. Retrieved 14 July 2021.
- ^ IRENA 2019, p. 9.
- ^ Bonheure, Mike; Vandewalle, Laurien A.; Marin, Guy B.; Van Geem, Kevin M. (March 2021). “Dream or Reality? Electrification of the Chemical Process Industries”. CEP Magazine. American Institute of Chemical Engineers. Archived from the original on 17 July 2021. Retrieved 6 July 2021.
- ^ Jump up to:a b Griffiths, Steve; Sovacool, Benjamin K.; Kim, Jinsoo; Bazilian, Morgan; Uratani, Joao M. (October 2021). “Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options”. Energy Research & Social Science. 80: 102208. doi:10.1016/j.erss.2021.102208.
- ^ Palys, Matthew J.; Daoutidis, Prodromos (May 2020). “Using hydrogen and ammonia for renewable energy storage: A geographically comprehensive techno-economic study”. Computers & Chemical Engineering. 136: 106785. doi:10.1016/j.compchemeng.2020.106785.
- ^ IRENA 2021, pp. 12, 22.
- ^ IEA 2021, pp. 15, 75–76.
- ^ Kjellberg-Motton, Brendan (7 February 2022). “Steel decarbonisation gathers speed | Argus Media”. www.argusmedia.com. Retrieved 7 September 2023.
- ^ Blank, Thomas; Molly, Patrick (January 2020). “Hydrogen’s Decarbonization Impact for Industry” (PDF). Rocky Mountain Institute. pp. 2, 7, 8. Archived (PDF) from the original on 22 September 2020.
- ^ Plötz, Patrick (31 January 2022). “Hydrogen technology is unlikely to play a major role in sustainable road transport”. Nature Electronics. 5 (1): 8–10. doi:10.1038/s41928-021-00706-6.
- ^ Fraser, Simon D.S.; Lock, Karen (December 2011). “Cycling for transport and public health: a systematic review of the effect of the environment on cycling”. European Journal of Public Health. 21 (6): 738–743. doi:10.1093/eurpub/ckq145. PMID 20929903.
- ^ “Global Greenhouse Gas Emissions Data”. United States Environmental Protection Agency. 12 January 2016. Archived from the original on 5 December 2019. Retrieved 15 October 2021.
- ^ Bigazzi, Alexander (May 2019). “Comparison of marginal and average emission factors for passenger transportation modes”. Applied Energy. 242: 1460–1466. Bibcode:2019ApEn..242.1460B. doi:10.1016/j.apenergy.2019.03.172.
- ^ Schäfer, Andreas W.; Yeh, Sonia (20 April 2020). “A holistic analysis of passenger travel energy and greenhouse gas intensities”. Nature Sustainability. 3 (6): 459–462. Bibcode:2020NatSu…3..459S. doi:10.1038/s41893-020-0514-9.
- ^ United Nations Environment Programme 2020, p. xxv.
- ^ IEA 2021, p. 137.
- ^ Pucher, John; Buehler, Ralph (2 November 2017). “Cycling towards a more sustainable transport future”. Transport Reviews. 37 (6): 689–694. doi:10.1080/01441647.2017.1340234.
- ^ Smith, John (22 September 2016). “Sustainable transport”. European Commission. Archived from the original on 22 October 2021. Retrieved 22 October 2021.
- ^ Knobloch, Florian; Hanssen, Steef V.; Lam, Aileen; Pollitt, Hector; Salas, Pablo; Chewpreecha, Unnada; Huijbregts, Mark A. J.; Mercure, Jean-Francois (23 March 2020). “Net emission reductions from electric cars and heat pumps in 59 world regions over time”. Nature Sustainability. 3 (6): 437–447. Bibcode:2020NatSu…3..437K. doi:10.1038/s41893-020-0488-7. PMC 7308170. PMID 32572385.
- ^ Bogdanov, Dmitrii; Farfan, Javier; Sadovskaia, Kristina; Aghahosseini, Arman; Child, Michael; Gulagi, Ashish; Oyewo, Ayobami Solomon; de Souza Noel Simas Barbosa, Larissa; Breyer, Christian (6 March 2019). “Radical transformation pathway towards sustainable electricity via evolutionary steps”. Nature Communications. 10 (1). doi:10.1038/s41467-019-08855-1. PMC 6403340. PMID 30842423.
- ^ Martini, Giorgio; Grigoratos, Theodoros (2014). Non-exhaust traffic related emissions – Brake and tyre wear PM. EUR 26648. Publications Office of the European Union. p. 42. ISBN 978-92-79-38303-8. OCLC 1044281650. Archived from the original on 30 July 2021.
- ^ Non-exhaust Particulate Emissions from Road Transport. 2020. pp. 8–9. doi:10.1787/4a4dc6ca-en. ISBN 978-92-64-45244-2.
- ^ “CO2 performance of new passenger cars in Europe”. www.eea.europa.eu. Retrieved 19 October 2022.
- ^ IEA 2021, pp. 133–137.
- ^ “Rail and waterborne – best for low-carbon motorised transport”. European Environment Agency. Archived from the original on 9 October 2021. Retrieved 15 October 2021.
- ^ Miller, Joe (9 September 2020). “Hydrogen takes a back seat to electric for passenger vehicles”. Financial Times. Archived from the original on 20 September 2020. Retrieved 9 September 2020.
- ^ IEA 2021, pp. 136, 139.
- ^ Biomass in a low-carbon economy (Report). UK Committee on Climate Change. November 2018. p. 18. Archived from the original on 28 December 2019. Retrieved 28 December 2019.
- ^ “Buildings”. IEA. Archived from the original on 14 October 2021. Retrieved 15 October 2021.
- ^ Mortensen, Anders Winther; Mathiesen, Brian Vad; Hansen, Anders Bavnhøj; Pedersen, Sigurd Lauge; Grandal, Rune Duban; Wenzel, Henrik (October 2020). “The role of electrification and hydrogen in breaking the biomass bottleneck of the renewable energy system – A study on the Danish energy system”. Applied Energy. 275: 115331. Bibcode:2020ApEn..27515331M. doi:10.1016/j.apenergy.2020.115331.
- ^ Knobloch, Florian; Pollitt, Hector; Chewpreecha, Unnada; Daioglou, Vassilis; Mercure, Jean-Francois (February 2019). “Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5 °C”. Energy Efficiency. 12 (2): 521–550. arXiv:1710.11019. Bibcode:2019EnEff..12..521K. doi:10.1007/s12053-018-9710-0.
- ^ Alva, Guruprasad; Lin, Yaxue; Fang, Guiyin (February 2018). “An overview of thermal energy storage systems”. Energy. 144: 341–378. Bibcode:2018Ene…144..341A. doi:10.1016/j.energy.2017.12.037.
- ^ Plumer, Brad (30 June 2021). “Are ‘Heat Pumps’ the Answer to Heat Waves? Some Cities Think So”. The New York Times. Archived from the original on 10 September 2021. Retrieved 11 September 2021.
- ^ Abergel, Thibaut (June 2020). “Heat Pumps”. IEA. Archived from the original on 3 March 2021. Retrieved 12 April 2021.
- ^ Buffa, Simone; Cozzini, Marco; D’Antoni, Matteo; Baratieri, Marco; et al. (2019). “5th generation district heating and cooling systems: A review of existing cases in Europe”. Renewable and Sustainable Energy Reviews. 104: 504–522. Bibcode:2019RSERv.104..504B. doi:10.1016/j.rser.2018.12.059.
- ^ Lund, Henrik; Werner, Sven; Wiltshire, Robin; Svendsen, Svend; et al. (2014). “4th Generation District Heating (4GDH)”. Energy. 68: 1–11. doi:10.1016/j.energy.2014.02.089. Archived from the original on 7 March 2021. Retrieved 13 June 2021.
- ^ Abdolhamidi, Shervin (27 September 2018). “An ancient engineering feat that harnessed the wind”. BBC. Archived from the original on 12 August 2021. Retrieved 12 August 2021.
- ^ “How cities are using nature to keep heatwaves at bay”. United Nations Environment Programme. 22 July 2020. Archived from the original on 11 September 2021. Retrieved 11 September 2021.
- ^ Jump up to:a b “Four Things You Should Know About Sustainable Cooling”. World Bank. 23 May 2019. Archived from the original on 11 September 2021. Retrieved 11 September 2021.
- ^ Mastrucci, Alessio; Byers, Edward; Pachauri, Shonali; Rao, Narasimha D. (March 2019). “Improving the SDG energy poverty targets: Residential cooling needs in the Global South”. Energy and Buildings. 186: 405–415. Bibcode:2019EneBu.186..405M. doi:10.1016/j.enbuild.2019.01.015.
- ^ Jump up to:a b c Smith & Pillarisetti 2017, pp. 145–146.
- ^ “Cooking appliances”. Natural Resources Canada. 16 January 2013. Archived from the original on 30 July 2021. Retrieved 30 July 2021.
- ^ World Health Organization; International Energy Agency; Global Alliance for Clean Cookstoves; United Nations Development Programme; Energising Development; and World Bank (2018). Accelerating SDG 7 Achievement Policy Brief 02: Achieving Universal Access to Clean and Modern Cooking Fuels, Technologies and Services (PDF) (Report). United Nations. p. 3. Archived (PDF) from the original on 18 March 2021.
- ^ World Health Organization 2016, p. 75.
- ^ IPCC 2014, p. 29.
- ^ World Health Organization 2016, p. 12.
- ^ REN21 2020, p. 40.
- ^ IEA 2020, p. 135.
- ^ United Nations Environment Programme 2019, p. 50.
- ^ Åhman, Max; Nilsson, Lars J.; Johansson, Bengt (4 July 2017). “Global climate policy and deep decarbonization of energy-intensive industries”. Climate Policy. 17 (5): 634–649. Bibcode:2017CliPo..17..634A. doi:10.1080/14693062.2016.1167009.
- ^ United Nations Environment Programme 2019, p. xxiii.
- ^ IEA 2021, p. 186.
- ^ Jump up to:a b c United Nations Environment Programme 2019, pp. 39–45.
- ^ Jaccard 2020, p. 109, Chapter 6 – We Must Price Carbon Emissions”.
- ^ Jump up to:a b United Nations Environment Programme 2019, pp. 28–36.
- ^ Ciucci, M. (February 2020). “Renewable Energy”. European Parliament. Archived from the original on 4 June 2020. Retrieved 3 June 2020.
- ^ “State Renewable Portfolio Standards and Goals”. National Conference of State Legislators. 17 April 2020. Archived from the original on 3 June 2020. Retrieved 3 June 2020.
- ^ IEA 2021, pp. 14–25.
- ^ IEA 2021, pp. 184–187.
- ^ IEA 2021, p. 16.
- ^ Jaccard 2020, pp. 106–109, Chapter 6 – “We Must Price Carbon Emissions”.
- ^ Plumer, Brad (8 October 2018). “New U.N. Climate Report Says Put a High Price on Carbon”. The New York Times. Archived from the original on 27 September 2019. Retrieved 4 October 2019.
- ^ Green, Jessica F (April 2021). “Does carbon pricing reduce emissions? A review of ex-post analyses”. Environmental Research Letters. 16 (4): 043004. Bibcode:2021ERL….16d3004G. doi:10.1088/1748-9326/abdae9.
- ^ IPCC 2018, 2.5.2.1.
- ^ State and Trends of Carbon Pricing 2019 (PDF) (Report). World Bank. June 2019. pp. 8–11. doi:10.1596/978-1-4648-1435-8. hdl:10986/29687. ISBN 978-1-4648-1435-8. Archived (PDF) from the original on 6 May 2020.
- ^ “Revenue-Neutral Carbon Tax | Canada”. United Nations Framework Convention on Climate Change. Archived from the original on 28 October 2019. Retrieved 28 October 2019.
- ^ Carr, Mathew (10 October 2018). “How High Does Carbon Need to Be? Somewhere From $20–$27,000”. Bloomberg. Archived from the original on 5 August 2019. Retrieved 4 October 2019.
- ^ “EAC launches new inquiry weighing up carbon border tax measures”. UK Parliament. 24 September 2021. Archived from the original on 24 September 2021. Retrieved 14 October 2021.
- ^ Plumer, Brad (14 July 2021). “Europe Is Proposing a Border Carbon Tax. What Is It and How Will It Work?”. The New York Times. Archived from the original on 10 September 2021. Retrieved 10 September 2021.
- ^ Bharti, Bianca (12 August 2021). “Taxing imports of heavy carbon emitters is gaining momentum – and it could hurt Canadian industry: Report”. Financial Post. Archived from the original on 3 October 2021. Retrieved 3 October 2021.
- ^ United Nations Environment Programme 2020, p. vii.
- ^ IEA 2021, p. 13.
- ^ IEA 2021, pp. 14–18.
- ^ IRENA, IEA & REN21 2018, p. 19.
- ^ Jump up to:a b “24 million jobs to open up in the green economy”. International Labour Organization. 14 May 2018. Archived from the original on 2 June 2021. Retrieved 30 May 2021.
- ^ Catsaros, Oktavia (26 January 2023). “Global Low-Carbon Energy Technology Investment Surges Past $1 Trillion for the First Time”. Bloomberg NEF (New Energy Finance). Figure 1. Archived from the original on 22 May 2023.
Defying supply chain disruptions and macroeconomic headwinds, 2022 energy transition investment jumped 31% to draw level with fossil fuels
- ^ “Global Clean Energy Investment Jumps 17%, Hits $1.8 Trillion in 2023, According to BloombergNEF Report”. BNEF.com. Bloomberg NEF. 30 January 2024. Archived from the original on 28 June 2024.
Start years differ by sector but all sectors are present from 2020 onwards.
- ^ Jump up to:a b 2024 data: “Energy Transition Investment Trends 2025 / Abridged report” (PDF). BloombergNEF. 30 January 2025. p. 9. Archived (PDF) from the original on 2 February 2025.
- ^ Jump up to:a b Mazzucato, Mariana; Semieniuk, Gregor (February 2018). “Financing renewable energy: Who is financing what and why it matters”. Technological Forecasting and Social Change. 127: 8–22. doi:10.1016/j.techfore.2017.05.021.
- ^ United Nations Development Programme & United Nations Framework Convention on Climate Change 2019, p. 24.
- ^ IPCC 2018, p. 96.
- ^ IEA, IRENA, United Nations Statistics Division, World Bank, World Health Organization 2021, pp. 129, 132.
- ^ United Nations Framework Convention on Climate Change 2018, p. 54.
- ^ United Nations Framework Convention on Climate Change 2018, p. 9.
- ^ Roberts, J. Timmons; Weikmans, Romain; Robinson, Stacy-ann; Ciplet, David; Khan, Mizan; Falzon, Danielle (March 2021). “Rebooting a failed promise of climate finance”. Nature Climate Change. 11 (3): 180–182. Bibcode:2021NatCC..11..180R. doi:10.1038/s41558-021-00990-2.
- ^ Radwanski, Adam (29 September 2021). “Opinion: As pivotal climate summit approaches, Canada at centre of efforts to repair broken trust among poorer countries”. The Globe and Mail. Archived from the original on 30 September 2021. Retrieved 30 September 2021.
- ^ “Here are the clean energy innovations that will beat climate change”. European Investment Bank. Retrieved 26 September 2022.
- ^ “Home”. www.oecd-ilibrary.org. Retrieved 19 October 2022.
- ^ Bridle, Richard; Sharma, Shruti; Mostafa, Mostafa; Geddes, Anna (June 2019). “Fossil Fuel to Clean Energy Subsidy Swaps: How to pay for an energy revolution” (PDF). International Institute for Sustainable Development. p. iv. Archived (PDF) from the original on 17 November 2019.
- ^ Watts, Nick; Amann, Markus; Arnell, Nigel; Ayeb-Karlsson, Sonja; Belesova, Kristine; Boykoff, Maxwell; Byass, Peter; Cai, Wenjia; Campbell-Lendrum, Diarmid; Capstick, Stuart; Chambers, Jonathan; Dalin, Carole; Daly, Meaghan; Dasandi, Niheer; Davies, Michael; Drummond, Paul; Dubrow, Robert; Ebi, Kristie L; Eckelman, Matthew; Ekins, Paul; Escobar, Luis E; Fernandez Montoya, Lucia; Georgeson, Lucien; Graham, Hilary; Haggar, Paul; Hamilton, Ian; Hartinger, Stella; Hess, Jeremy; Kelman, Ilan; Kiesewetter, Gregor; Kjellstrom, Tord; Kniveton, Dominic; Lemke, Bruno; Liu, Yang; Lott, Melissa; Lowe, Rachel; Sewe, Maquins Odhiambo; Martinez-Urtaza, Jaime; Maslin, Mark; McAllister, Lucy; McGushin, Alice; Jankin Mikhaylov, Slava; Milner, James; Moradi-Lakeh, Maziar; Morrissey, Karyn; Murray, Kris; Munzert, Simon; Nilsson, Maria; Neville, Tara; Oreszczyn, Tadj; Owfi, Fereidoon; Pearman, Olivia; Pencheon, David; Phung, Dung; Pye, Steve; Quinn, Ruth; Rabbaniha, Mahnaz; Robinson, Elizabeth; Rocklöv, Joacim; Semenza, Jan C; Sherman, Jodi; Shumake-Guillemot, Joy; Tabatabaei, Meisam; Taylor, Jonathon; Trinanes, Joaquin; Wilkinson, Paul; Costello, Anthony; Gong, Peng; Montgomery, Hugh (November 2019). “The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate”. The Lancet. 394 (10211): 1836–1878. Bibcode:2019Lanc..394.1836W. doi:10.1016/S0140-6736(19)32596-6. PMC 7616843. PMID 31733928.
- ^ United Nations Development Programme 2020, p. 10.
- ^ Kuzemko, Caroline; Bradshaw, Michael; Bridge, Gavin; Goldthau, Andreas; Jewell, Jessica; Overland, Indra; Scholten, Daniel; Van de Graaf, Thijs; Westphal, Kirsten (October 2020). “Covid-19 and the politics of sustainable energy transitions”. Energy Research & Social Science. 68: 101685. Bibcode:2020ERSS…6801685K. doi:10.1016/j.erss.2020.101685. PMC 7330551. PMID 32839704.
- ^ IRENA 2021, p. 5.